H(t)=-16t^2+72t+.5

Simple and best practice solution for H(t)=-16t^2+72t+.5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+72t+.5 equation:



(H)=-16H^2+72H+.5
We move all terms to the left:
(H)-(-16H^2+72H+.5)=0
We get rid of parentheses
16H^2-72H+H-.5=0
We add all the numbers together, and all the variables
16H^2-71H-0.5=0
a = 16; b = -71; c = -0.5;
Δ = b2-4ac
Δ = -712-4·16·(-0.5)
Δ = 5073
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-71)-\sqrt{5073}}{2*16}=\frac{71-\sqrt{5073}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-71)+\sqrt{5073}}{2*16}=\frac{71+\sqrt{5073}}{32} $

See similar equations:

| z=2(–5) | | r=12/3 | | r=12/3 | | F(5)=4•x+9 | | 4=4(k | | 12x-5=-3x+15x | | 10^x^-2=10000 | | 10^x^-2=^10000 | | 10^x-2=^10000 | | 3/4(4x-16)-12=-18 | | y=-5+1/2 | | 36x=162+2x^2 | | 1/2y-6=20 | | y=9/2-10 | | 3(p=2)=18 | | 3(p=2 | | 7p-4p+2=-7 | | 7p-4p+2=-7 | | −14x+2=-10x+2 | | x+9/2=x+2/9 | | 1/5x+4=x-36 | | 3+c=59 | | 4=2x(4) | | 1)n-4=2 | | 1)n-4=2 | | 8h+3=-45 | | 14x-1=12x.17 | | 14x-1=12x.17 | | 1.8x+9=3(x+7) | | 4w+13=17 | | 1.8x+9=3(x+7) | | 1.8x+9=3(x+7) |

Equations solver categories